This article summarizes equations used in optics, including geometric optics, physical optics, radiometry, diffraction, and interferometry.
Definitions
Geometric optics (luminal rays)
General fundamental quantities
| Quantity (common name/s) | (Common) symbol/s | SI units | Dimension |
|---|---|---|---|
| Object distance | x, s, d, u, x1, s1, d1, u1 | m | [L] |
| Image distance | x', s', d', v, x2, s2, d2, v2 | m | [L] |
| Object height | y, h, y1, h1 | m | [L] |
| Image height | y', h', H, y2, h2, H2 | m | [L] |
| Angle subtended by object | θ, θo, θ1 | rad | dimensionless |
| Angle subtended by image | θ', θi, θ2 | rad | dimensionless |
| Curvature radius of lens/mirror | r, R | m | [L] |
| Focal length | f | m | [L] |
| Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
|---|---|---|---|---|
| Lens power | P | m−1 = D (dioptre) | [L]−1 | |
| Lateral magnification | m | dimensionless | dimensionless | |
| Angular magnification | m | dimensionless | dimensionless | |
Physical optics (EM luminal waves)
There are different forms of the Poynting vector, the most common are in terms of the E and B or E and H fields.
| Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
|---|---|---|---|---|
| Poynting vector | S, N | W m−2 | [M][T]−3 | |
| Poynting flux, EM field power flow | ΦS, ΦN | W | [M][L]2[T]−3 | |
| RMS Electric field of Light | Erms | N C−1 = V m−1 | [M][L][T]−3[I]−1 | |
| Radiation momentum | p, pEM, pr | J s m−1 | [M][L][T]−1 | |
| Radiation pressure | Pr, pr, PEM | W m−2 | [M][T]−3 | |
Radiometry

For spectral quantities two definitions are in use to refer to the same quantity, in terms of frequency or wavelength.
| Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
|---|---|---|---|---|
| Radiant energy | Q, E, Qe, Ee | J | [M][L]2[T]−2 | |
| Radiant exposure | He | J m−2 | [M][T]−3 | |
| Radiant energy density | ωe | J m−3 | [M][L]−3 | |
| Radiant flux, radiant power | Φ, Φe | W | [M][L]2[T]−3 | |
| Radiant intensity | I, Ie | W sr−1 | [M][L]2[T]−3 | |
| Radiance, intensity | L, Le | W sr−1 m−2 | [M][T]−3 | |
| Irradiance | E, I, Ee, Ie | W m−2 | [M][T]−3 | |
| Radiant exitance, radiant emittance | M, Me | W m−2 | [M][T]−3 | |
| Radiosity | J, Jν, Je, Jeν | W m−2 | [M][T]−3 | |
| Spectral radiant flux, spectral radiant power | Φλ, Φν, Φeλ, Φeν |
|
W m−1 (Φλ) W Hz−1 = J (Φν) |
[M][L]−3[T]−3 (Φλ) [M][L]−2[T]−2 (Φν) |
| Spectral radiant intensity | Iλ, Iν, Ieλ, Ieν |
|
W sr−1 m−1 (Iλ) W sr−1 Hz−1 (Iν) |
[M][L]−3[T]−3 (Iλ) [M][L]2[T]−2 (Iν) |
| Spectral radiance | Lλ, Lν, Leλ, Leν |
|
W sr−1 m−3 (Lλ) W sr−1 m−2 Hz−1 (Lν) |
[M][L]−1[T]−3 (Lλ) [M][L]−2[T]−2 (Lν) |
| Spectral irradiance | Eλ, Eν, Eeλ, Eeν |
|
W m−3 (Eλ) W m−2 Hz−1 (Eν) |
[M][L]−1[T]−3 (Eλ) [M][L]−2[T]−2 (Eν) |
Equations
Luminal electromagnetic waves
| Physical situation | Nomenclature | Equations |
|---|---|---|
| Energy density in an EM wave | = mean energy density | For a dielectric: |
| Kinetic and potential momenta (non-standard terms in use) | Potential momentum:
Kinetic momentum: Canonical momentum: | |
| Irradiance, light intensity |
|
At a spherical surface: |
| Doppler effect for light (relativistic) |
| |
| Cherenkov radiation, cone angle |
|
|
| Electric and magnetic amplitudes |
|
For a dielectric
|
| EM wave components | Electric
Magnetic | |
Geometric optics
| Physical situation | Nomenclature | Equations |
|---|---|---|
| Critical angle (optics) |
|
|
| Thin lens equation |
|
Lens focal length from refraction indices |
| Image distance in a plane mirror | ||
| Spherical mirror | r = curvature radius of mirror | Spherical mirror equation
Image distance in a spherical mirror |
Subscripts 1 and 2 refer to initial and final optical media respectively.
These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:
where:
- ε = permittivity of medium,
- μ = permeability of medium,
- λ = wavelength of light in medium,
- v = speed of light in media.
Polarization
| Physical situation | Nomenclature | Equations |
|---|---|---|
| Angle of total polarisation | θB = Reflective polarization angle, Brewster's angle | |
| intensity from polarized light, Malus's law |
|
|
Diffraction and interference
| Property or effect | Nomenclature | Equation |
|---|---|---|
| Thin film in air |
|
|
| The grating equation |
|
|
| Rayleigh's criterion | ||
| Bragg's law (solid state diffraction) |
|
where |
| Single slit diffraction intensity |
|
|
| N-slit diffraction (N ≥ 2) |
|
|
| N-slit diffraction (all N) | ||
| Circular aperture intensity |
|
|
| Amplitude for a general planar aperture | Cartesian and spherical polar coordinates are used, xy plane contains aperture
|
Near-field (Fresnel)
Far-field (Fraunhofer) |
| Huygens–Fresnel–Kirchhoff principle |
|
|
| Kirchhoff's diffraction formula | ||
Astrophysics definitions
In astrophysics, L is used for luminosity (energy per unit time, equivalent to power) and F is used for energy flux (energy per unit time per unit area, equivalent to intensity in terms of area, not solid angle). They are not new quantities, simply different names.
| Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
|---|---|---|---|---|
| Comoving transverse distance | DM | pc (parsecs) | [L] | |
| Luminosity distance | DL | pc (parsecs) | [L] | |
| Apparent magnitude in band j (UV, visible and IR parts of EM spectrum) (Bolometric) | m | dimensionless | dimensionless | |
| Absolute magnitude
(Bolometric) |
M | dimensionless | dimensionless | |
| Distance modulus | μ | dimensionless | dimensionless | |
| Colour indices | (No standard symbols) | dimensionless | dimensionless | |
| Bolometric correction | Cbol (No standard symbol) | dimensionless | dimensionless | |
See also
- Defining equation (physical chemistry)
- List of electromagnetism equations
- List of equations in classical mechanics
- List of equations in gravitation
- List of equations in nuclear and particle physics
- List of equations in quantum mechanics
- List of equations in wave theory
- List of relativistic equations
Sources
- P.M. Whelan; M.J. Hodgeson (1978). Essential Principles of Physics (2nd ed.). John Murray. ISBN 0-7195-3382-1.
- G. Woan (2010). The Cambridge Handbook of Physics Formulas. Cambridge University Press. ISBN 978-0-521-57507-2.
- A. Halpern (1988). 3000 Solved Problems in Physics, Schaum Series. Mc Graw Hill. ISBN 978-0-07-025734-4.
- R.G. Lerner; G.L. Trigg (2005). Encyclopaedia of Physics (2nd ed.). VHC Publishers, Hans Warlimont, Springer. pp. 12–13. ISBN 978-0-07-025734-4.
- C.B. Parker (1994). McGraw Hill Encyclopaedia of Physics (2nd ed.). McGraw Hill. ISBN 0-07-051400-3.
- P.A. Tipler; G. Mosca (2008). Physics for Scientists and Engineers: With Modern Physics (6th ed.). W.H. Freeman and Co. ISBN 978-1-4292-0265-7.
- L.N. Hand; J.D. Finch (2008). Analytical Mechanics. Cambridge University Press. ISBN 978-0-521-57572-0.
- T.B. Arkill; C.J. Millar (1974). Mechanics, Vibrations and Waves. John Murray. ISBN 0-7195-2882-8.
- H.J. Pain (1983). The Physics of Vibrations and Waves (3rd ed.). John Wiley & Sons. ISBN 0-471-90182-2.
- J.R. Forshaw; A.G. Smith (2009). Dynamics and Relativity. Wiley. ISBN 978-0-470-01460-8.
- G.A.G. Bennet (1974). Electricity and Modern Physics (2nd ed.). Edward Arnold (UK). ISBN 0-7131-2459-8.
- I.S. Grant; W.R. Phillips; Manchester Physics (2008). Electromagnetism (2nd ed.). John Wiley & Sons. ISBN 978-0-471-92712-9.
- D.J. Griffiths (2007). Introduction to Electrodynamics (3rd ed.). Pearson Education, Dorling Kindersley. ISBN 978-81-7758-293-2.
Further reading
- L.H. Greenberg (1978). Physics with Modern Applications. Holt-Saunders International W.B. Saunders and Co. ISBN 0-7216-4247-0.
- J.B. Marion; W.F. Hornyak (1984). Principles of Physics. Holt-Saunders International Saunders College. ISBN 4-8337-0195-2.
- A. Beiser (1987). Concepts of Modern Physics (4th ed.). McGraw-Hill (International). ISBN 0-07-100144-1.
- H.D. Young; R.A. Freedman (2008). University Physics – With Modern Physics (12th ed.). Addison-Wesley (Pearson International). ISBN 978-0-321-50130-1.